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IRREGULAR PRIMES TO ONE MILLION 

J. P. BUHLER, R. E. CRANDALL, AND R. W. SOMPOLSKI 

ABSTRACT. Using "fast" algorithms for power series inversion (based on the 
fast Fourier transform and multisectioning of power series), we have calculated 
all irregular primes up to one million, including their indices of irregularity 
and associated irregular pairs. Using this data, we verified that Fermat's "Last 
Theorem" and Vandiver's conjecture are true for these primes. Two primes 
with index of irregularity five were already known; we find that there are nine 
other primes less than one million with index five and that the prime 527377 is 
the unique prime less than one million with index six. 

A pair of integers (p, k) is said to be an irregular pair if p is a prime, k 
is an even integer satisfying 2 < k < p - 3, and p divides the numerator of 
the Bernoulli number Bk. Irregular pairs have been computed by Vandiver, 
D. H. Lehmer, E. Lehmer, Selfridge, Nicol, Pollack, Johnson, Wada, Wagstaff, 
and Tanner (see [10] and references therein). The most recent tabulations de- 
scribed in [1 1] cover all primes p < 150000. The purpose of this paper is to 
describe the computation of all irregular pairs for p < 106. 

These calculations have several well-known applications. In all cases known 
so far, the list of all irregular pairs of p enables one to verify Fermat's "Last 
Theorem" (FLT) for the prime p . The technique for doing this originates with 
Vandiver (see, e.g., [12]); using these ideas, we find that FLT is true for all 
p < 106. Note also that recent ideas of Frey, Serre, and Ribet (see [6]) provide 
evidence for the truth of FLT; specifically, Ribet shows that the Taniyama-Weil 
conjectures on elliptic curves imply FLT. 

The tabulation of the irregular pairs also allows one to verify Vandiver's con- 
jecture, for which there seems to be little theoretical evidence one way or the 
other. Vandiver's conjecture asserts that p does not divide the class number 
h+(p) of the totally real subfield of the cyclotomic field generated by the pth 
roots of unity. For small p this conjecture is true for the trivial reason that 
h+(p) < p; however, examples of h+(p) > p are known (see [8]). Our calcula- 
tions show that Vandiver's conjecture is true for all p < 106. 

The table of irregular pairs could also be used to calculate Iwasawa invariants 
for the corresponding primes. We did not do this as part of our calculations; 
see [9] or [4] for a discussion of this problem. 

Previous computations of irregular pairs have used algorithms that take 0(p2) 
arithmetic operations for each prime p. The Bernoulli numbers are defined, in 
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the even suffix notation, by the formal power series 

x 00 n X Xn 

ex_ 1 =EBn - 
n=O 

To compute irregular pairs for a prime p, the coefficients of this power series 
must be computed modulo p out to k = p - 3. Our basic idea was to use 
fast Fourier transform (FFT) algorithms to compute the power series inverse 
in time O(p log(p)) (a related, though slightly less efficient, idea is described 
in [1]). In order to minimize running time and memory requirements, it was 
necessary to modify this initial idea by multisectioning the power series (as 
described below) and fine-tuning the underlying FFT algorithm. The computa- 
tions were performed for p < 106 on a network of NeXT workstations [2, 3] 
and to p < 400, 000 on an IBM 3090 at the Cornell National Supercomputing 
Facility (CNSF). In addition to checking the results by implementing several 
programs on different machines, we implemented some stringent internal con- 
sistency checks to verify the calculations of the Bernoulli numbers. 

With our current implementation it is possible to find all irregular pairs for 
primes near 107 . For example, we find that p = 8, 388,019 is regular, pre- 
sumably the largest explicit regular prime known. Incidentally, the challenge 
of finding large irregular primes is qualitatively quite different. For example, 
the numerator of B 18 is of the form 59q, where q is a 100-digit prime, so 
(q, 118) is an irregular pair. 

1. ALGORITHMS 

Fix a prime p. In order to compute the Bernoulli numbers Bk for k < p -3, 
we need to compute the inverse of the power series f = (ex - 1)/x out to 
the xP-3-term, or, as we shall say, out to O(XP-2). All computations of the 
coefficients need to be done modulo p. If g is an approximation to f-I, 
then the standard Newton iteration for taking reciprocals (see [5]) says that 
h = 2g - fg2 is a better approximation; more precisely, if g - f-I = O(xn) 
then h - f -I = O(x2n) . Thus, the inverse of f to O(xp-3) can be computed in 
O(log(p)) Newton iterations, each requiring three polynomial multiplications 
with polynomials whose degree doubles at each iteration. Only the final iteration 
is done to full precision and it is easy to see that the total time is bounded by 
a constant times the cost of the final polynomial multiplication. (All of our 
times are measured in arithmetic operations, but the arithmetic is being done 
on integers of size p, so the bit complexity only differs from these by a power of 
log(p); in our actual computations all primes fit in a word, and so an arithmetic 
operation effectively took constant time.) 

Two polynomials of degree k were multiplied by the usual device of padding 
the polynomial with zeros to the next higher power of two, K = 2a, and then 
using the FFT (see [5]). Both integer and floating-point FFT algorithms were 
implemented. 

In the integer version, the FFT was done modulo two primes, each larger 
than 230 and each congruent to 1 modulo K; the results were combined by 
Chinese remainder techniques. (Note that two 30-bit primes are sufficient to 
determine the product over the integers, since the coefficients of the product 
of two polynomials of degree K with coefficients bounded by p is bounded 
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by pK2, which is bounded by p3 and hence 260.) The primes were chosen 
to be congruent to 1 modulo K, so that the appropriate roots of unity existed 
modulo those primes; no convolution algorithm working directly in the field of 
p elements seemed competitive. 

In the floating-point implementations of the FFT the results were rounded 
to the nearest integer and then reduced modulo p. Considerable accuracy was 
gained by using a "balanced" representation of the coefficients in which the 
coefficients were kept in the interval [-(p - 1)/2, (p - 1)/2]. This assured 
that the sequences being convolved were generally bipolar, so that the floating- 
point error of the FFT floating-point convolution is markedly less than when the 
coefficients are in the usual interval [0, p - 1]. Careful estimates of the error 
together with experimental confirmation convinced us that IEEE standard 64-bit 
floating-point arithmetic gave sufficient precision to handle primes p < 4. 106. 
(The isolated calculations, referred to above, for primes up to 1 07 were done 
by also computing the Bernoulli numbers modulo 216 to compensate for the 
slightly insufficient precision in the floating-point computation; this doubled the 
running time.) 

The inversion of the power series 

f(x) = (ex - 1)/x = 1 + x/2! + x2/3! + + xp-3/(p - 2)! + O(xp-2) 

modulo p can be simplified by multiplying the coefficients through by (p - 2)! 
to avoid computing inverses modulo p. A more significant savings can be 
achieved by using the identity 

x2 -2 ? (2n - 1)B2n 2n 
cosh(x)- n= (2n)! 

(which can be proved by differentiating the expression for (f(x)-1+f(-x)- 1) /x 
in terms of the Bernoulli numbers). Since this is a power series in x2, the 
necessary Bernoulli numbers can be computed by a power series merely of length 
about p/2. In order to run our programs on workstations with limited memory, 
it turned out to be important to extend this multisectioning idea [7, p. 132] 
even further. We ended up multisectioning by eighth roots of unity to find the 
identities 

x cosh(x/V2) -? 2nB2n 2n Ao(x) + A2(X) + A4(x) + A6(x) 

vrsinh(x/ v') n=0 (2n)! D(x) 

where the power series Ai and D have coefficients 

Ak(X) = E (8n +_k_ + !8 n+k '(8n + 4)D 
n=O ~~~~~~~~n=0 

that are completely defined by their initial two terms and a recursion that applies 
to the coefficients Cn of all five power series: 

Cn+ = -136cn - 16cn-I n > 1, 

Do=24, DI=-3168, 
A00 = 6, AO, =-792, A20= 20, A21 =-2704, 

A40 =-28, A41= 3824, A60 = 96, A61 =-13056. 
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(Note that 4A0, = D,, which slightly simplifies the computations.) The point of 
multisectioning is that the only polynomial inversion required is the inversion of 
D(x) to O(x8m), where m = [(p - 5)/8]. Since D(x) is a power series in x8, 
this means that we are inverting a polynomial of length approximately p/8 . One 
curious feature of this multisectioning is that the factorial in the denominator 
of the term in D(x) required to compute the last Bernoulli number Bp-3 is 
not relatively prime to p. Rather than trying to find other multisectioning 
identities, we opted for computing Bp-3 mod p using the Voronoi identity 
(relation (1) in [10]). This did not appreciably increase the running time, since 
this last Bernoulli number can be calculated modulo p in time 0(p). 

In the computations carried out at CNSF the multisectioning was done using 
ninth roots of unity. Thus, there were nine rational functions with a com- 
mon denominator; the polynomials were more complicated than those given 
above, and the recursion relations were considerably more complicated (requir- 
ing extended-precision integer constants). The Bernoulli numbers Bp_7, Bp-5, 
and Bp-3 were all "inaccessible" as above, and had to be computed separately. 

Multisectioning provided a considerable gain not only in efficiency, but also 
in memory requirements. In addition to requiring less memory for the series 
being inverted, the Ai can be computed serially, so that space is only needed 
for one Ai array. If this technique were to be extended, the time requirements 
for inversion could be decreased still further, although the recurrence relations 
would become more complicated and further inaccessible coefficients would be 
introduced at the tail end of the power series. 

Any large-scale computation is vulnerable to all sorts of errors, both in soft- 
ware and hardware. We checked the Bernoulli numbers by empirically verifying, 
for each p, the identity 

p-3 
2n (n + 1)Bn -4 (modp). 

n=0 

(One way to prove the identity is to find the coefficient of Xp-2 in 

Z0 k X 2x ex+1(ff2 nBn xn)(Iffj xr , k k! =ex - I ezx- 1 2 (E n! )( 2 E~ m!) 

and to use Wilson's Theorem to find that, for n even, n!(p - 2 - n)! 
1 /(n + 1) modp .) This identity turned out to be especially useful; it enabled us 
to catch bugs in our programs, and to detect hardware errors (faulty memory 
on computers in the distributed network) that had not been otherwise noticed. 

2. RESULTS 

The computation of irregular pairs was done for all p < 106. On a single 
68040-based NeXT station it takes our implementations about 200 seconds to 
compute all relevant Bk for a prime near 106. The Vandiver criterion [10, 
12] was applied to all irregular pairs, and, as in the earlier computations up to 
150000, FLT and Vandiver's conjecture were always found to be true. 

The largest index of irregularity was six; the unique prime with irregularity 
six is p = 527377. In addition to the two primes of index five already known 
[1 1], nine further primes of index five were found. The indices for all primes 
of index greater than or equal to five are given in Table 1. 
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TABLE 1. Irregular primes of index 5 or 6 

p k such that p divides Bk 

78233 10400, 32084, 46620, 47364, 64628 

94693 11636, 54754, 76326, 80650, 84726 

162791 5374, 55866, 91758, 113422, 148008 

334183 71956, 147746, 185584, 249484, 269172 

432749 58230, 106152, 118198, 226438, 381994 

527377 45740, 121620, 275372, 329694, 405590, 427078 

675823 41770, 240886, 303428, 407948, 532058 

679519 3040, 114300, 305012, 442932, 526062 

700643 57626, 77204, 272956, 349742, 367798 

731593 11824, 110020, 161232, 195510, 303270 

754969 107012, 200390, 444842, 629186, 708078 

845309 74094, 169160, 339356, 351774, 628666 

TABLE 2. Irregularity index densities 

r 7rr(106) 7r(106)/7(106) e/112/(2rr!) 

0 47627 0.60673656 0.60653065 

1 23816 0.30340012 0.30326532 

2 5954 0.07585003 0.07581633 

3 956 0.01217880 0.01263605 

4 132 0.00168159 0.00157950 

5 11 0.00014013 0.00015795 

6 1 0.00001273 0.00001316 

As has been noted by several people (see [9]), if the numerators of the 
Bernoulli numbers are uniformly random modulo odd primes, then the index 
of irregularity should satisfy a Poisson distribution with mean 1/2; as a special 
case, noted by Lehmer and Siegel, the density of the irregular primes should 
be 1 - e-l2. More generally, if 7r(n) is the number of primes less than or 
equal to n, and lrr(n) denotes the number of odd primes less than or equal 
to n with index of irregularity r, then this would predict that 7rr(n)/lr(n) is 
approximately equal to e-l!2/2rr!. The predicted and observed densities are 
tabulated in Table 2 (although it should be clear that the densities for r > 3 
are based on far too little data to have any significance). The values truncated 
at 125000 were also computed and checked against the table in [10]; we found 
complete agreement. 
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